Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Applied Sciences ; 11(22):10596, 2021.
Article in English | MDPI | ID: covidwho-1512087

ABSTRACT

Recently, an emerging application field through Twitter messages and algorithmic computation to detect real-time world events has become a new paradigm in the field of data science applications. During a high-impact event, people may want to know the latest information about the development of the event because they want to better understand the situation and possible trends of the event for making decisions. However, often in emergencies, the government or enterprises are usually unable to notify people in time for early warning and avoiding risks. A sensible solution is to integrate real-time event monitoring and intelligence gathering functions into their decision support system. Such a system can provide real-time event summaries, which are updated whenever important new events are detected. Therefore, in this work, we combine a developed Twitter-based real-time event detection algorithm with pre-trained language models for summarizing emergent events. We used an online text-stream clustering algorithm and self-adaptive method developed to gather the Twitter data for detection of emerging events. Subsequently we used the Xsum data set with a pre-trained language model, namely T5 model, to train the summarization model. The Rouge metrics were used to compare the summary performance of various models. Subsequently, we started to use the trained model to summarize the incoming Twitter data set for experimentation. In particular, in this work, we provide a real-world case study, namely the COVID-19 pandemic event, to verify the applicability of the proposed method. Finally, we conducted a survey on the example resulting summaries with human judges for quality assessment of generated summaries. From the case study and experimental results, we have demonstrated that our summarization method provides users with a feasible method to quickly understand the updates in the specific event intelligence based on the real-time summary of the event story.

2.
BMC Bioinformatics ; 22(Suppl 5): 147, 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1505775

ABSTRACT

BACKGROUND: To classify chest computed tomography (CT) images as positive or negative for coronavirus disease 2019 (COVID-19) quickly and accurately, researchers attempted to develop effective models by using medical images. RESULTS: A convolutional neural network (CNN) ensemble model was developed for classifying chest CT images as positive or negative for COVID-19. To classify chest CT images acquired from COVID-19 patients, the proposed COVID19-CNN ensemble model combines the use of multiple trained CNN models with a majority voting strategy. The CNN models were trained to classify chest CT images by transfer learning from well-known pre-trained CNN models and by applying their algorithm hyperparameters as appropriate. The combination of algorithm hyperparameters for a pre-trained CNN model was determined by uniform experimental design. The chest CT images (405 from COVID-19 patients and 397 from healthy patients) used for training and performance testing of the COVID19-CNN ensemble model were obtained from an earlier study by Hu in 2020. Experiments showed that, the COVID19-CNN ensemble model achieved 96.7% accuracy in classifying CT images as COVID-19 positive or negative, which was superior to the accuracies obtained by the individual trained CNN models. Other performance measures (i.e., precision, recall, specificity, and F1-score) obtained bythe COVID19-CNN ensemble model were higher than those obtained by individual trained CNN models. CONCLUSIONS: The COVID19-CNN ensemble model had superior accuracy and excellent capability in classifying chest CT images as COVID-19 positive or negative.


Subject(s)
COVID-19 , Deep Learning , Humans , Neural Networks, Computer , Research Design , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL